Из истории головоломок с неповторяющимися цифрами

Задачи с неповторяющимися цифрами встречаем в замечательном отечественном трёхтомнике Е. И. Игнатьева «В царстве смекалки, или Арифметика для всех: Опыт математической хрестоматии: Книга для семьи и школы». В «Книге 1» приведена:

«Задача 32-я: Написать число 100 посредством девяти различных значащих цифр».

56 + 8 + 4 + 3 = 71+29=100».

Здесь Е. И. Игнатьев разъясняет: «Как видим, в предпоследнем решении допущен некоторый «фокус». Сначала из шести разных цифр составлено три числа, дающих в сумме 98 - число, опять-таки составленное из двух новых цифр, и к нему прибавляется число, изображённое недостающей цифрой 2. В сумме получается требуемое число 100. Подобно же составлено и последнее решение».

Интересно, что почти такую же задачу приводит И. Я. Герд в «Сборнике игр и полезных занятий для детей всех возрастов с предисловием для родителей и воспитателей», раздел «Задачи»:

«17. Составьте из цифр 1, 2, 3, 4, 5, 6, 7, 8 и 9 такие числа, чтобы через сложение получить ровно 100».

При этом в ответе приводится только одно решение, немного отличающееся от указанных Е. И. Игнатьевым:

15 + 36 + 47-98 + 2=100.

Нетрудно найти и другие решения с «фокусом» помимо тех, которые присутствуют в пособиях Е. И. Игнатьева и И.Я. Герда:

73 + 10 + 6 + 5 + 4 = 98 + 2= 100;

70 + 16 + 3 + 4 + 5 = 98 + 2= 100;

53 + 8 + 4 + 6 = 71+29=100;

45 + 37+ 16 = 98 + 2= 100;

58 + 3 + 4 + 6 = 71+ 29=100;

47 + 36+15=98 + 2= 100 и т. п.

Еще раньше головоломку о числе 100 привёл классик занимательной математики американец С. Лойд, в его книге «Математическая мозаика».

Как видно, ответы на заинтересовавшие головоломки из книг Е. И. Игнатьева и С. Лойда либо очень сложны, либо не вполне корректны.

Целям книги И.Г. Сухина «Занимательные материалы» больше соответствует задание, которое привёл А. В. Сатаров в четырёхтомнике «Живая арифметика в часы досуга: Пособие семье и школе для развития смекалки в детях». В «Книге второй» он опубликовал следующую задачу: «11. Составьте из первых семи цифр: 1,2, 3,4,5,6,7 такие четыре числа, чтобы при сложении их получить ровно 100; при этом брать какую-либо цифру два или три раза нельзя. Ответ: Числа, удовлетворяющие условиям задачи, таковы: 2, 15, 36, 47. Действительно: 2 + 15 + 36 + 47 = 100. Возможны и другие решения, например: 2+ 17 + 35 + 46=100». В данной задаче очень много решений. Вот ещё некоторые из них:

5 + 12 + 37 + 46; 6+ 15 + 32 + 47; 7+ 16 + 35+42.

Очевидно, что иные решения легко получить перестановкой цифр в слагаемых (т. е. вместо 35 + 42 можно написать 32 + 45 и т. д.).

Новое о педагогике:

Подбор упражнений для воспитания физических качеств и способы регулирования нагрузки
Подбирая упражнения для воспитания физических качеств, необходимо, прежде всего соотнести их с основными упражнениями, изучаемыми на занятиях, а затем определить их направленность на воспитание того или иного физического качества (метод со ...

Воспитание выносливости
Выполнение продолжительной физической работы невозможно без достаточного развития выносливости. Выносливостью называется совокупность функциональных свойств организма, обеспечивающих длительное выполнение какой-либо двигательной деятельнос ...

Категории

Copyright © 2019 - All Rights Reserved - www.edutarget.ru