В современной школе остро стоит вопрос о присутствии старинных занимательных задач в учебниках по математике. В различных математических монографиях есть страницы, посвященные истории возникновения знаменитых задач, доступных учащимся старших классов1. Однако практически нет работ, из которых учитель начальной школы мог бы получить исчерпывающую информацию о не менее известных старинных головоломках, представляющих интерес для учеников 1—4 классов.
Во многих учебниках они практически отсутствуют. Но в учебниках по математике под редакцией Л. Г. Петерсона можно встретить довольно большое количество старинных занимательных задач, изучаемых в разных классах, практически по всем темам. Проследим поразительную судьбу некоторых из таких задач. В частности в учебнике по математике 1-го класса (III часть) под редакцией Л. Г. Петерсона в уроке №27, в задании 10 встречается задача «Волк, коза и капуста», которой более 1200 лет. Здесь она звучит следующим образом: «Некий человек должен был перевезти в лодке через реку волка, козу и капусту. В лодке может поместиться один человек, а с ним или волк, или коза, или капуста. Но если оставить волка с козой без человека, то волк съест козу. Если оставить козу с капустой, то коза съест капусту. А в присутствии человека «никто никого не ел». Человек всё-таки перевёз свой груз через реку. Как он это сделал?».
В «Книге 1» труда Е. И. Игнатьева «В царстве смекалки, или Арифметика для всех: Опыт математической хрестоматии: Книга для семьи и школы» приведена одна из самых замечательных логических задач в истории человечества: «Задача 52-я. Волк, коза и капуста».
Даже если приводимая задача вам знакома, не спешите читать решение, попробуйте, словно впервые, поискать оптимальный маршрут и только затем ознакомьтесь с ходом решения, предлагаемым Е. И. Игнатьевым.
Данный ход решения можно применять в начальной школе с использованием иллюстративного материала, что с большей степенью повысит эффективность развития познавательной активности младших школьников.
«Решение: Ясно, что приходится начать с козы. Крестьянин, перевезши козу, возвращается и берет волка, которого перевозит на другой берег, где его и оставляет, но зато берет и везет обратно на первый берег козу. Здесь он оставляет ее и перевозит к волку капусту. Вслед затем, возвратившись, он перевозит козу, и переправа оканчивается благополучно».
Данная задача бессчетное число раз публиковалась в самых различных отечественных газетах, журналах и сборниках. При этом почти во всех работах упоминается только одно решение. А ведь есть и альтернативный путь! И возможно дети начнут именно с него, глядя на иллюстрации.
Вначале крестьянин опять-таки перевозит козу. Но вторым он не обязательно должен забирать волка! Можно взять капусту, отвезти ее на другой берег, оставить там и вернуть на первый берег козу. Затем перевезти на другой берег волка, вернуться за козой и снова отвести ее на другой берег. В этом случае количество рейсов точно такое же, как и в опубликованном выше варианте.
Существование двух решений не отмечено ни в многократных переизданиях книги Е. И. Игнатьева, ни в других самых авторитетных источниках. В их числе: Э. Люкас «Математические развлечения: Приложение арифметики, геометрии и алгебры к различного рода запутанным вопросам, забавам и играм», Н. Н. Аменицкий, И. П. Сахаров «Забавная арифметика: Хрестоматия для развития сообразительности и самодеятельности детей в семье и в школе», В. Арене «Математические игры и развлечения», Б. А. Кордемский «Математическая смекалка» и многочисленные сборники последних лет.
Это тем более удивительно, что наличие двух решений было указано, к примеру, еще в начале 20-х годов XX века в книге В. Литцмана «Веселое и занимательное в фигурах и числах: Математические развлечения», причем довольно подробное. Видимо, многие издатели сочли необязательным приводить оба варианта, ведь они схожи, и являются по сути «зеркальными». Но в книге для детей, особенно младшего возраста, это необходимо, иначе существенно снижается педагогическая ценность задачи!
Любопытно, что Б. А. Кордемский в решении отмечает только второй вариант и по какой-то причине не упоминает первый. Загадка? Загадка.
Очень интересен вопрос о времени возникновения данной головоломки и ее первоисточнике. Б. А. Кордемский в книге «Математическая смекалка» говорит вскользь: «Это . старинная задача; встречается в сочинениях VIII века».
Новое о педагогике:
Дидактико-методические системы. Основные теоретические направления и
принципы обучения
Обучение – процесс социально обусловленный, вызванный необходимостью воспроизводства человека как субъекта общественных отношений. Отсюда важнейшая социальная функция обучения заключается в формировании личности, соответствующей социальным ...
Подготовка советских учителей
Сразу после окончания ВОВ ЦК партии и Советское правительство решают ряд коренных проблем деятельности школы, подготовки и переподготовки учительских кадров. В мае 1945 г. утверждено положение о золотой и серебряной медалях для оканчивающи ...