Формы и методы индивидуализации в обучении

Новое в образовании » Индивидуализация в процессе обучения математике » Формы и методы индивидуализации в обучении

Страница 8

Факультативные курсы по математике предполагаются двух видов.

Первый – это «Дополнительные главы и вопросы математики», цель которых расширить и углубить знания учащихся по обязательной для всех программе, изучение вопросов, примыкающих к программным или раскрывающих приложения математики. Второй – небольшие специальные курсы, знакомящие учащихся (в основном старших классов) с некоторыми областями современной математики (векторная алгебра, математическая логика и др.).

В современной школе весьма актуальными стали альтернативные предметы. В случае факультативных предметов у школьников есть возможность свободного выбора: он должен решить, изучать какой либо предмет или нет. При альтернативных же предметах он обязан выбрать один из предложенных предметов. С одной стороны, это лишает ученика возможности отказаться от изучения какого-либо предмета вообще, что в воспитательном смысле необходимо именно при пассивных и ленивых учениках. С другой стороны, это активизирует учащихся, ставит их перед необходимостью осуществить выбор.

В старших классах заслуживает внимания использование таких различных видов обучения, которые расширили бы возможности творческой, самостоятельной работы учащихся и способствовали бы их занятиям в собственном индивидуальном стиле. Так ученик может изучать какой-либо предмет самостоятельно при условии своевременной сдачи соответствующего зачета.

Некоторые положения по индивидуализации и дифференциации, высказанные выше, были проверены в ходе педагогической практики в школе №27 г. Кирова в 2002 году.

Главной целью опытной работы было проверить влияние некоторых форм и методов индивидуализации на развитие учащихся, используя такие показатели как обученность, познавательный интерес и возможности прохождения некоторых тем математики в различном темпе.

Опытная работа проводилась в 11д классе школы №27. В классе 28 учеников. Из них на 4 и 5 учились 10 человек, на 4 и 3 – 15 человек, на 3 – 3 человека, отличников и неуспевающих не было. Наблюдения и беседы с учащимися показали, что у 5 учеников имелся познавательный интерес к математике.

В начале опытной работы была проведена самостоятельная работа на применение правил дифференцирования: нахождение производной суммы двух функций и вынесение константы за знак производной. Задания были дифференцированные. На оценку 3 нужно было выполнить задания №1-5, (вычислить производные данных функций). На 4 – задания №1-5 и задание №6. на 5 – задания №1-6 и №7.

Приведем пример одного варианта.

Вычислить производные следующих функций:

№1 f(x)=13x-8;

№2 f(x)=6x4+9x2-10x;

№3 f(x)=(2x)15;

№4 f(x)=(3x+2)4;

№5 f(x)=.

№6 Решить уравнение f '(x)=0, если f(x)=x3-x2-3x.

№7 Найти f '(4), если f(x)=.

Были получены следующие результаты:

все задания (оценка 5) выполнили 4 ученика;

задания №1-6 (оценка 4) выполнили 10 учеников;

задания №1-5 (оценка 3) выполнили 11 учеников;

не справились с заданием 3 ученика.

Исходя из уровня развития, учащихся была продумана система индивидуальных и групповых заданий, а также работа факультатива.

Например, на уроке по теме «Правила дифференцирования» (урок закрепления) пятерым более сильным учащимся были выданы индивидуальные карточки со следующими заданиями:

Даны функции g(x)=

Страницы: 3 4 5 6 7 8 9 10 11

Новое о педагогике:

Принцип условий свободы развития ребенка
Под изменением структуры воспитания Монтессори подразумевала создание "условий свободы" в процессе воспитания. Именно поэтому свободный выбор деятельности и средств для нее коренным образом отличал организацию учебного процесса в ...

Влияние игр на развитие ребенка, его личности
Ученик начальной школы психологически включен в игру. Он свободно и самостоятельно выбирает для себя ту или иную игрушку, придумывает тот или иной сюжет, включает в свою игру сверстника, и они действуют по правилам, которые они сами устано ...

Категории

Copyright © 2019 - All Rights Reserved - www.edutarget.ru