Факультативные курсы по математике предполагаются двух видов.
Первый – это «Дополнительные главы и вопросы математики», цель которых расширить и углубить знания учащихся по обязательной для всех программе, изучение вопросов, примыкающих к программным или раскрывающих приложения математики. Второй – небольшие специальные курсы, знакомящие учащихся (в основном старших классов) с некоторыми областями современной математики (векторная алгебра, математическая логика и др.).
В современной школе весьма актуальными стали альтернативные предметы. В случае факультативных предметов у школьников есть возможность свободного выбора: он должен решить, изучать какой либо предмет или нет. При альтернативных же предметах он обязан выбрать один из предложенных предметов. С одной стороны, это лишает ученика возможности отказаться от изучения какого-либо предмета вообще, что в воспитательном смысле необходимо именно при пассивных и ленивых учениках. С другой стороны, это активизирует учащихся, ставит их перед необходимостью осуществить выбор.
В старших классах заслуживает внимания использование таких различных видов обучения, которые расширили бы возможности творческой, самостоятельной работы учащихся и способствовали бы их занятиям в собственном индивидуальном стиле. Так ученик может изучать какой-либо предмет самостоятельно при условии своевременной сдачи соответствующего зачета.
Некоторые положения по индивидуализации и дифференциации, высказанные выше, были проверены в ходе педагогической практики в школе №27 г. Кирова в 2002 году.
Главной целью опытной работы было проверить влияние некоторых форм и методов индивидуализации на развитие учащихся, используя такие показатели как обученность, познавательный интерес и возможности прохождения некоторых тем математики в различном темпе.
Опытная работа проводилась в 11д классе школы №27. В классе 28 учеников. Из них на 4 и 5 учились 10 человек, на 4 и 3 – 15 человек, на 3 – 3 человека, отличников и неуспевающих не было. Наблюдения и беседы с учащимися показали, что у 5 учеников имелся познавательный интерес к математике.
В начале опытной работы была проведена самостоятельная работа на применение правил дифференцирования: нахождение производной суммы двух функций и вынесение константы за знак производной. Задания были дифференцированные. На оценку 3 нужно было выполнить задания №1-5, (вычислить производные данных функций). На 4 – задания №1-5 и задание №6. на 5 – задания №1-6 и №7.
Приведем пример одного варианта.
Вычислить производные следующих функций:
№1 f(x)=13x-8;
№2 f(x)=6x4+9x2-10x;
№3 f(x)=(2x)15;
№4 f(x)=(3x+2)4;
№5 f(x)=.
№6 Решить уравнение f '(x)=0, если f(x)=x3-x2-3x.
№7 Найти f '(4), если f(x)=.
Были получены следующие результаты:
все задания (оценка 5) выполнили 4 ученика;
задания №1-6 (оценка 4) выполнили 10 учеников;
задания №1-5 (оценка 3) выполнили 11 учеников;
не справились с заданием 3 ученика.
Исходя из уровня развития, учащихся была продумана система индивидуальных и групповых заданий, а также работа факультатива.
Например, на уроке по теме «Правила дифференцирования» (урок закрепления) пятерым более сильным учащимся были выданы индивидуальные карточки со следующими заданиями:
Даны функции g(x)=
Новое о педагогике:
Средства выразительности в
скульптуре. Возможности воспитательного воздействия искусства на людей
Выразительность скульптуры достигается с помощью особой архитектоники форм, построения основных планов, объемов масс, ритмических отношений, составляющих единое целое, которые занимают трехмерное пространство. Основными эстетическими средс ...
Методические приемы формирования читательской компетенции
Процесс обучения обязательно должен носить двухсторонний характер: учитель обучает, ученик учится. Решающая роль в педагогическом процессе обязательно принадлежит учителю. Его задача – в первую очередь привлечь внимание к себе, а затем - к ...