Из истории задач о переливании жидкостей

Страница 1

Практически ни один классический сборник, связанный с играми и развлечениями, не обходится без раздела «Дележи», причём заметное место в нём занимают задачи о переливании жидкостей из сосуда в сосуд.

К сожалению, большинство подобных старинных головоломок сложны, и поэтому не подходят для начальной школы. Как это ни удивительно, но в отечественных учебных пособиях сравнительно простых заданий данного класса практически нет. А ведь не подлежит сомнению, что они помогут детям в занимательной форме быстрее освоить действия сложения, вычитания и попрактиковаться в комбинаторике.

Лишь одну доступную детям младшего школьного возраста задачу находим в пособии для учителей М. Б. Балка «Организация и содержание внеклассных занятий по математике»:

«Имея 2 бидона на 4 и 5л, можно ли налить из водопроводного крана в ведро 3 л. воды? (Ёмкость ведра не меньше 3 л.) Ответ: можно».

Быстрейшим путём задача решается так: Заполняется водой четырёхлитровый бидон, затем вода переливается в пятилитровый, снова вода доверху наливается в меньшую ёмкость, и из меньшей 1 л отливается в большую. В результате в четырёхлитровом бидоне будет 3 литра воды.

Ещё две «водяные» головоломки приводятся в разделе «Задачи-смекалки» пособия для учителей 1-11 классов А. А. Свечникова и П. И. Сорокина «Числа, фигуры, задачи во внеклассной работе»:

«111. Как набрать из водопровода 6л воды, пользуясь двухлитровой банкой и чайником, в который входит 5л?

Решение: Напиваем в банку 2 раза по 2 л и переливаем в чайник, затем ещё раз напиваем в банку 2 л.

136. Как имея банку вместимостью 4 л и бидон -9 л, набрать из реки точно 7 л воды?»

Оптимальное решение второй задачи в пособии не даётся. Вот оно: Два раза заполняем банку водой и переливаем по 4 л воды из банки в бидон, снова наполняем банку и добавляем 1 л из неё в бидон, после этого все 9 л воды из чайника выливаем в раковину, и в бидон переливаем оставшиеся в банке 3 л, снова заполняем четырёхлитровую банку водой из реки и получаем требуемые (суммарные)

7л = Зл + 4л.

Непросто определить, в каком старинном трактате впервые появились задачи на переливание жидкостей, которые можно использовать при изучении темы «Величины» в начальной школе. Пожалуй, самая известная из них опубликована более семи веков назад. Познакомимся с ней:

«В одном средневековом сочинении восходящим к середине 13-го столетия, предлагается такого рода задача: Господин послал своего слугу в ближайший город купить 8 мер вина. Когда слуга, выполнив поручение, собирался домой, ему повстречался другой слуга, которого господин тоже посла! за вином. «Сколько у тебя вина?» — спрашивает второй слуга. «8 мер», — отвечает тот. «Мне тоже нужно купить вина». «Ты уже ничего не получишь, так как в городе больше вина нет», — заявляет первый. Тогда второй слуга просит его поделиться с ним вином и показывает ему имеющиеся при нём два сосуда, один в 5, другой в 3 меры. Как произвести делёж: при помощи этих трёх сосудов?».

Приведём ход кратчайшего решения, включающего 7 операций переливания, обозначив «трёхмерный» сосуд, как первый, «пятимерный» назовём вторым, а «восьмимерный» — третьим.

Итак: 1. Из третьего во второй отливаем 5 мер.

Из второго в первый -— 3 меры.

Из первого в третий переливаем 3 миры.

4. Из второго в первый — 2 меры.

5. Из третьего во второй — 5 мер.

6. Из второго в первый — 1 меру.

7. Из первого в третий — 3 меры.

В результате во втором и третьем сосудах получается по 4 меры вина. Широкую известность эта задача получила после публикации двумя изданиями сочинения К. Баше «Игры и задачи, основанные на математике». На русском языке книга К.Баше была издана лишь в 19-м веке, да и то в сокращенном виде.

Безусловно, и до 1877 года задача о сосудах встречалась на страницах отечественных книг. Указанную головоломку встречаем в сочинении «Гадательная арифметика для забавы и удовольствия». Задача №24 имеет следующий вид:

Страницы: 1 2

Новое о педагогике:

Психологическая деформация семьи как главный фактор девиантного поведения подростков
Под дисгармоничной семьей понимается семья, которая не выполняет свои функции, не обеспечивает достаточное удовлетворение потребностей всех членов семьи, возможности их личностного роста вследствие нарушения ролевой структуры семьи, отсутс ...

Историко-критический образ методики чтения
При исследовании значимости обучения чтению в образовании, воспитании и развитии детей, я обратилась к опыту учёных, педагогов-новаторов, работающих в этой области. Современная методика чтения и развития речи использует ценный опыт методик ...

Copyright © 2020 - All Rights Reserved - www.edutarget.ru